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Abstract

We construct a quarterly measure of the output gap for Papua New

Guinea. To do so, we must first construct a quarterly measure of GDP.

We do so by employing the procedure of [Chow, Lin, 1971], generalized by

[Fernandez, 1981]. We use a number of criteria to ascertain which input

indicator series to use in the Chow-Lin procedure. Having constructed

a quarterly output series, we generate a variety of output gap measures

using two statistical processes, the Hodrick-Prescott (HP) filter and the

Beveridge-Nelson (BN) decomposition.
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1 Introduction

In recent years, Papua New Guinea (PNG) has enjoyed a period of sustained

economic growth. Rising commodity prices, and the commencement of major

mining projects have been the main drivers of this growth. Gross Domestic

Product (GDP) has grown by an average of roughly 7 percent annually over the

last five years.1 Concurrently, there is widespread consensus amongst fiscal and

monetary authorities that significant domestic demand pressures have built up

in this time. This phenomenon is of great interest to the Bank of Papua New

Guinea (BPNG), as a build-up of domestic demand over and above the supply

capacity of the economy may create inflationary pressures.

Since inflation is measured on a quarterly basis, analysis of this effect should be

performed at the same frequency. Previous attempts have been made at creating

a quarterly measure of output and of the output gap for PNG. [Lahari et al., 2009]

constructs quarterly GDP series for a variety of South Pacific Island countries,

including PNG, using the approach of [Chow, Lin, 1971]. This approach will lay

the foundation for the first half of the present paper. [Sampson et al., 2006] use

a variety of quarterly output measures, ranging from interpolating annual GDP

data to using proxy variables for output such as non-mineral exports and the

budget deficit, and then applying an HP filter to the resultant series. Whilst this

approach is both innovative and novel in its choice and employment of appropri-

ate proxy variables for output, it does not combine the information contained in

both the quarterly proxies and the annual GDP series, thereby loosing valuable

information. In this paper, we will address this issue by adopting a systematic

and rigorous method for ascertaining which quarterly variables may proxy GDP

well, and then combining these variables with the official annual GDP data in the

manner of [Chow, Lin, 1971] and [Fernandez, 1981].2 The Chow-Lin procedure

is a method of temporal disaggregation that entails significant advantages over

standard interpolation. Most importantly, it combines relevant high-frequency

series with the low-frequency series, thus incorporating important quarterly in-

formation whilst maintaining the overall profile of the high-frequency series.

This paper is the first in a two-part analysis. This installment is devoted solely

to constructing a quarterly measure of the output gap. As such, there is no

1Based on Treasury and Bank of Papua New Guinea estimates.
2Henceforth, we will refer to these approaches as the Chow-Lin and Fernandez procedures

respectively.
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estimation of a structural model. For such results, we refer you to the second

installment, which will use this measure to estimate a Phillips Curve for PNG.

This paper is structured as follows. We begin by creating a quarterly series for

GDP. This involves choosing a set of potential quarterly indicator series that are

seen to trend with GDP, both by using principal component analysis (PCA),

as well as simply eye-balling the variables. Having “pre-filtered”the data, we

employ both the Chow-Lin procedure and a slight variant of this procedure,

as described in [Fernandez, 1981]. Having created the quarterly output series,

we construct various measures of the output gap. This step involves using two

different statistical methods for detrending output into potential and cyclical

components, each method entailing a different economic interpretation of the

output gap. We conclude by briefly describing the economic narrative embodied

in our final measure of the output gap, and its relevance for inflation in PNG.

2 Creating the Quarterly Output Series

2.1 Real versus Nominal Output

Before we proceed, it is worth clarifying an important point regarding whether

we are considering real or nominal output. Insofar as the final objective of

this paper is to construct an output gap, using real output is preferred. With

this in mind, there are two potential approaches we could adopt. First, we

could consider annual nominal inflation, use nominal quarterly series, create

a quarterly nominal output series and then deflate this series using a quarterly

deflator. Such a quarterly deflator could be either CPI, or preferably, a quarterly

GDP deflator constructed by applying the Chow-Lin procedure to the annual

GDP deflator, using headline CPI as the sole quarterly series. Second, we could

take annual real output, use real quarterly series and create a quarterly real

output series directly.3 In this paper, we opt for the later, mainly because a

number of potentially valuable quarterly series, such as employment series, are

available only in real terms. As such, all potential quarterly series are expressed

in constant prices.

3The former approach was adopted by [Lahari et al., 2009].
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2.2 Pre-filtering

Our approach to choosing the best possible indicators involves narrowing down

from a large range of potential indicators to just a handful. First, we compile a

large database of all potential indicators of real GDP, drawing from monetary,

fiscal, balance of payments and production data. For details on these data,

refer to Appendix A. Next, we perform a simple eye-balling exercise, annualizing

these series and plotting the results against annual output. At this stage, we

can immediately rule out many series that clearly do not trend with annual

output, since it is highly unlikely that they will represent quarterly output in

this case. We then turn to a more rigorous means of ruling out possible indicators

by performing a principal component analysis between the potential quarterly

indicators.

The results from the eye-balling exercise are shown in Figures 1 to 4. The quar-

terly indicators have been both annualized and transformed into index form,

thus making both the trend and scale of each series comparable to the annual

output series. From the graphs alone, we can immediately rule out a number of

variables. In Figure 1, it is only the variables “Currency outside depository cor-

porations”that follows the trend and growth rate of output; the other variables

grow far faster than output. In Figure 2, both “Personal tax”and “Recurrent

Expenditures”have roughly the correct trend and growth rates. A similar analy-

sis for the other charts yields the first-round filtering short-list of seven variables,

as described in Table 1.

The final stage of pre-filtering involves a technique known as principal compo-

nent analysis (PCA). For a given set of variables, PCA finds combinations of

the individual series that account for most of the variance in the data.4 If we

have a number of variables that are assumed to trend with the same overall

variable (in this case output), redundancy occurs if variables are correlated. To

this end, PCA is often used to deal with multicollinearity in multiple regression

analysis. The PCA generates two important sets of outputs. The eigenvectors

are combinations of the variables that effectively tell us how significant each of

them are in explaining the variance in the data, whilst the eigenvalues effec-

tively tell us which of the eigenvector combinations best account for the overall

variance. As such, we are mainly interested in the eigenvector with the largest

associated eigenvalue, and the highest weighted variables within this eigenvec-

4For the sake of brevity, we will refrain from providing a lengthy discussion of PCA.
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Figure 1: Monetary Indicators
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Figure 2: Fiscal Indicators
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Figure 3: Import Indicators
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Figure 4: Production Indicators
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Figure 5: Potential Indicators
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Table 1: Results of eye-balling exercise

Variable Keep or discard?
Broad money Discard
Narrow money Discard
Currency outside depository corporations Keep
Transferable deposits Discard
Total deposits Discard
Domestic claims on private sector Discard
Personal Tax Keep
Tax revenue Discard
Tax on international trade Discard
Government expenditure Discard
Recurrent expenditure Keep
Imports - food and beverages Keep
Imports - fuel and lubricants Discard
Employment - non-mineral Keep
Employment - mineral Keep
Electricity sales, kwh Keep

tor. The results from the PCA performed on the seven short-listed variables are

summarized in Table 2.

It is clear that the first eigenvector explains the highest proportion of the overall

variance in the data, and that within this eigenvector, the “recurrent expendi-

tures”and “food imports”series capture the least part of the variance, i.e. are

the weakest. The remaining variables account for relatively similar proportions

of the overall variance. Since this method is employed here only as an indication,

it would be unwise to exclude too many variables based on its findings. Hence,

we eliminate only the “recurrent expenditures”and “food imports”variables at

this stage.

At the end of the pre-filtering process then, we are left with the final choice of

indicator variables as described in Table 3.

2.3 The Chow-Lin Procedure

Having selected a shortlist of five indicators, this section proceeds to discuss

the Chow-Lin procedure and the Eviews implementation used in this paper.5

As intimated in the introduction, the procedure is a method of temporal disag-

5The Eviews source code listing for the procedure is contained in Appendix D.
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Table 2: Principal Components Analysis

Table 3: Final Choice of Indicators
Currency outside depository corporations
Personal Tax
Employment - non-mineral
Employment - mineral
Electricity sales, kwh
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gregation that transforms an annual series into a quarterly series by combining

other quarterly series (herein refered to as indicator series or simply indicators)

that relate to the underlying annual series.6 It offers many advantages to basic

interpolation. Firstly, the annual GDP series may not entirely accurate, and

hence may not fully represent actual output. This is particularly relevant in the

case of PNG, where official GDP data as compiled by the National Statistics

Office has been unavailable since 2006, and hence GDP is based on Ministry of

Treasury estimates.7 In this case, it is clearly preferable to use a range of indi-

cators that may provide additional relevant information above and beyond the

annual series. Secondly, interpolation, by definition, assumes a quarterly profile

for the annual series. The Chow-Lin procedure uses the information contained

in the quarterly indicators to generate a non-trivial quarterly profile.

There are other practical benefits. Currently, the primary statistical software

used at the Bank of Papua New Guinea (BPNG) is Eviews, version 7. Since the

procedure is computationally relatively simple, writing an Eviews program to

execute the procedure is a relatively straightforward affair.8

2.3.1 Theory

We will keep exposition of the technical aspects of the procedure to a minimum.9

Let ya be the annual series in question, y the unknown quarterly series and X

the matrix of quarterly indicators. Thus, in our case, ya is annual output, y

is quarterly output and X is a 5-column matrix comprising of our five chosen

indicators.

We assume a linear relationship holds between y and X of the form:

y = Xβ + ε

where E(ε) = 0 and E(εε′) = Ω. Let C be an aggregation matrix that pre-

multiplies with y to give ya:

6The procedure works from any low frequency to high frequency conversion, but we are
specifically concerned with annual to quarterly conversion.

7See the Budget 2012, Vol 1.
8To the authors’ best knowledge, there is no in-built functionality in Eviews 7 or previous

releases that performs the Chow-Lin procedure, hence the need to write the routine from
scratch. Such functionality exists for a range of other software, including RATS, STATA,
GAUSS, OxMetrics and MATLAB.

9For further details, see [Chow, Lin, 1971] and [Frain, 2004].
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Then ya = Cy and Xa = CX, where Xa is the matrix of annualized quarterly

indicators.10

The aim is to find the best linear unbiased estimator for y in terms of C and Ω.

This is given by the expression:

ŷ = Xβ̂ + ΩC ′(CΩC ′)−1ûa

where

β̂a =
[
X ′a(CΩC ′)−1Xa

]−1
X ′a(CΩC ′)−1ya (3)

ûa = ya −X
[
X ′a(CΩC ′)−1Xa

]−1
X ′a(CΩC ′)−1ya (4)

As [Frain, 2004] notes, the expression for ŷ can be given an intuitive interpreta-

tion; the final quarterly series is the sum of two components:

• Xβ̂ is the estimated regression coefficients applied to the quarterly indica-

tors.

• ΩC ′(CΩC ′)−1ûa is the residual in the annual regression distributed over

the quarters.11

Aside from choosing the indicators, the implementation of this procedure involves

one major difficulty, namely that the covariance matrix Ω is unknown. Hence,

10C takes the annual figure to be the arithmetic mean over the four quarters. The aggregation
matrix C is given for interpolation of a flow variable. If a stock variable is used, then we require

C =
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11This ensures that the final quarterly series sums to the known annual series.
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we must assume a certain structure for it. [Chow, Lin, 1971] assume that these

innovations follow a stationary AR(1) process, and are homoskedastic. These

assumptions are most succinctly described in the state-space representation:12

yt = xtβ + ut (5)

ut = ρut−1 + εt (6)

where |ρ| < 1, u1 N(0, σ2/(1− ρ2)) and εt iid,N(0, σ2). [Fernandez, 1981] con-

siders the case of non-stationary innovations, i.e. ρ = 1, whilst [Litterman, 1983]

models the first difference of the innovations as an AR(1), thus rendering the

state-space representation:

yt = xtβ + ut (7)

∆ut = ρ∆ut−1 + εt (8)

In our implementation of the procedure, we allow for innovations in the errors ε

that are are heteroskedastic and follow a “pseudo-AR(1)”process.13 For further

details, see Appendix B.

2.3.2 Application

Having chosen our quarterly series in Section 2.2, we can now run the Chow-Lin

procedure, using various combinations of the quarterly series as inputs. Owing

to the vast quantity of possible combinations, we restrict our output to a few

hand-selected combinations.14 Chart 6 shows three combinations of quarterly

input series. The series labeled “gdp cnst qrtly”is simply annual GDP uniform

distributed over the four quarters in each year.

It is important to observe that the plots for all three quarterly output series

thread through gdp cnst qrtly, demonstrating that the procedure is distributive.

The series labelled “tax per, kwh”took personal income tax and electricity pro-

12See [Proietti, 2004].
13In the actual implementation, we make the simplifying assumption that the innovations

are homoskedastic. This assumption is easily altered in the code, but was seen to make little
impact on the overall output of the procedure.

14For six quarterly indicators, there are
∑6

i=1

(6

i

)
= 63 combinations as inputs.
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Figure 6: Quarterly Output Series, for different combinations of quarterly input
series
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duction as inputs, and is a good example of one potential failing of the Chow-Lin

procedure, namely that there is nothing prohibiting the endogenously determined

value of the autocorrelation parameter ρ generating highly volatile quarterly out-

put series. This problem is addressed in the routine listed. See Appendix B for

further details. It is hard to discriminate visually between the two remaining

quarterly output series. We shall proceed with both of them, and use the output

gap measures to further discriminate.

2.3.3 Extensions

We began this section by outlining some of the benefits entailed in adopting the

Chow-Lin procedure. However, there are some drawbacks involved, which have

been addressed through a number of extensions to the Chow-Lin procedure.

Firstly, as outlined previously, the extensions proposed in [Fernandez, 1981]

and [Litterman, 1983] model the autocorrelation in the innovations differently.

[Litterman, 1983] argues that the approach of [Fernandez, 1981] performs signif-

icantly better than the Chow-Lin procedure. He also proposes his approach is

an improvement on [Fernandez, 1981]. We wrote code to perform the Fernandez

procedure, and as such, unless otherwise stated, will proceed using the Fernan-

dez procedure.15 Other extensions were proposed by [Hendry, Mizon, 1978] and

[Harvey, Chung, 2000], the former generalizing the Litterman approach further,

and the latter providing a multivariate approach to disaggregation.

3 Constructing the Output Gap

As intimated in the introduction, the ultimate purpose of this paper is to con-

struct a quarterly measure of demand-pull inflationary pressures for PNG. The

process through which such inflationary pressures manifest can be characterized

as follows: The supply capacity of the economy is temporarily fixed, as fac-

tors of production are finite (there are a limited number of workers, and capital

equipment). Hence, an increase in demand will lead to short-run upward price

pressures as firms adjust prices upwards to meet this additional demand. Thus,

15We generated output measures using both procedures, and found little difference between
the results, when the autocorrelation parameter in the Chow-Lin procedure was calculated
using the approach outlined in Appendix B. The Fernandez approach was favoured as per the
reasoning of [Litterman, 1983]. The Litterman procedure presented severe difficulties when
deriving a maximum likelihood function to determine the auto-correlation parameter for the
first-difference innovation terms, and as such was disregarded.
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we require a measure of the excess of aggregate demand over the aggregate sup-

ply capacity of the economy. As such, a quarterly output series is necessary but

insufficient, since quarterly output cannot capture this mismatch itself. We must

instead consider the output gap. The output gap measures the difference between

actual output and potential output, where potential output may be defined as

the level of output that can be sustained in the long-run.16

Indeed, how we define potential output, and hence the output gap, plays a cru-

cial role in how these variables should be estimated. Roughly speaking, we may

think of three approaches to defining potential output. The first is statistical,

i.e. potential output is simply the statistical trend component of actual output.

Methods of estimating potential output consistent with this approach would be

univariate filters such as the Hodrick-Prescott (HP) Filter and Beveridge-Nelson

(BN) decomposition, as well as state-space models, such as the Unobserved Com-

ponents (UC) method and generalized Kalman Filter approaches.17 The second

is structural, i.e. potential output as representing the supply capacity and struc-

ture of production within the economy.18 Estimation methods for this approach

include the production function approach or estimating Okun’s Law.19 The third

is a combination of the first two, i.e. using a structural approach combined with

statistical filtering. Structural Vector Autoregression (SVAR) analysis, as well

as multivariate filtering (Kalman, HP filters) approaches fit into this category.

In this paper, we will employ a simple univariate filter, applied to the quarterly

output series rendered in the previous section. As such, our approach best fits

into the third category. After all, the Chow-Lin procedure imposes a linear re-

lationship between output and relevant indicator variables, thus embodying an

economic relationship, whilst the HP filter falls squarely into the statistical cat-

egory. Indeed, in the case where the chosen quarterly series are employment and

electricity production, the Chow-Lin procedure can be interpreted as estimating

a production function.20 We find this approach to be both practical and rigor-

16This definition is far from universal. There is a substantial literature devoted to the
definition and estimation of potential output. We shall not attempt to reflect its manifold
hypotheses in the current paper.

17See [Hodrick, Prescott, 1980], [Beveridge, Nelson, 1981] and [Watson., 1986] for the pri-
mary expositions of the HP filter, BN decomposition and UC methods respectively.

18See [ECB, 2000].
19[Proietti et al., 2007] estimate the output gap for the Euro area using a production function

approach, whilst [Attfield, Silverstone., 1998] adopt an Okun’s Law approach, combined with
cointegration analysis.

20It is clear that the non-mineral employment series represents labor as a factor of production,
L, whilst many studies have adopted electricity consumption as a proxy for the capital stock, K.
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ous. Estimating structural relationships requires high quality data, the absence

of which may yield weak or non-sensical results. On the other hand, purely sta-

tistical approaches often lack a certain economic intuition, and the results can

be hard to provide an economic interpretation of.

3.1 Univariate Filtering

We will apply two univariate filters, namely the HP filters and BN decomposi-

tions. For the HP filter, we choose the parameter λ according to the methodology

outlined in [Marcet, Ravn., 2003]. We run the BN decomposition on a variety

of ARMA specifications for the autocorrelation structure in the deterministic

trend component. See Appendix C for further details. Figures 7 to 10 show the

results.21

It may seem disconcerting that the output gap measures derived through the

HP filters and BN decompositions differ to such a high degree. Indeed, they

appear to exhibit almost no correlation whatsoever. This is readily explained

by observing the trend output components estimate by each method. The HP

filter clearly models potential output as adjusting at a far slower rate than the

BN decomposition, which models potential output as accounting for the major

part of output volatility. Which one we choose depends on our view on potential

output in PNG.22 We feel that the HP filter estimates of trend output are a

more realistic representation of the evolution of potential output in PNG, and

hence will adopt this as our final choice of univariate filter. Furthermore, there

is little difference between the gap measures including and excluding “currency

in circulation”as a quarterly input variable. As such, we will exclude it from

out input variables set, as an output series based on purely production variables

(non-mineral employment and electricity production) embodies a more elegant

economic interpretation.

See, for instance, [Vial., 2006] and [Levinsohn, Petrin., 2003]. The annual regression function
in the Chow-Lin procedure thus becomes:

y4t = β0 + β1L4t + β2K4t

21For the HP filters, we set λ = 1600, and for the BN decompositions, we use an ARMA(2,1)
structure for the autocovariance structure for ∆yt.

22[Morley et al., 2002] discuss the divergence between BN and UC decompositions of output,
whilst giving intuitive explanations why how this divergence relates to each filter’s definition
of potential output.
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Figure 7: Output gap measures, using non-mineral employment, electricity pro-
duction and currency in circulation as quarterly input series

20



Figure 8: Trend output measures, using non-mineral employment, electricity
production and currency in ciruclation as quarterly input series
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Figure 9: Output gap measures, using non-mineral employment and electricity
production as quarterly input series
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Figure 10: Trend output measures, using non-mineral employment and electricity
production as quarterly input series
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3.2 Interpretation

Figure 11 shows the final choice of output gap measure, using non-mineral em-

ployment and electricity production as quarterly indicators, and the univariate

HP filter with λ = 1600. At this point, it is instructive to try and interpret

the economic narrative told by this measure, i.e. what does it tell us about

demand conditions in PNG over the sample period, and does this story match

up with the stylized facts of actual experience? Of particular note is the year

2011, where the output gap is at a historical high. This is in keeping with the

notion that PNG has been experiencing a boom, fulled by the major PNGLNG

natural gas project and associated activities.23 There is also some evidence to

support the height of the commodity price boom that occurred in the immediate

run-up to the global financial crisis in 2008Q3. However, there are some areas

of concern. Notably, the period around 1997Q3 - 1998Q1, in which the output

gap turns highly negative, implying a deep recession was experienced in PNG at

this time, followed by a short period of strong growth from 1998Q2 - 1999Q3.

To the authors’ best knowledge, this story does not match the reality of PNG’s

experience around this period in history, and hence we must see this as a failing

of our choice of output gap in accurately reflecting historical demand conditions.

Of course, there are several alternative measures of the output gap that we

could consider, two of which stand out. First, we could consider using annual

non-mineral output rather than total output. This approach assumes that min-

ing output has little or no impact of domestic demand conditions, as mining

companies often provide their own factors of production. Secondly, one could

disregard entirely the annual GDP series and simply form a weighted average of

the underlying indicators to create a quarterly output measure, using the weights

endogenously determined in the Chow-Lin or Fernandez procedures.24 The out-

put gap is again constructed using the univariate HP filter. We refer to these

output gaps as the non-mineral and composite output gaps respectively. For

the sake of brevity, we omit detailed expositions of these alternative approaches.

23The project has large spillover effects in manufacturing, construction and transport. See
the March 2012 Quarterly Economic Bulletin.

24More specifically, the Chow-Lin procedure assigns GLS estimator values for the quarterly
weights, given by equation (3). The weighted average of the indicator series would then become

β̂

‖β‖
X =

1

‖β‖

p∑
i=1

β̂iXi

where p is the number of quarterly indicators.

24
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Figure 11: Final choice of output gap
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Figure 12 shows these different measures.

4 Conclusion

In this paper, we constructed a quarterly measure of economic output using the

procedure of

[Chow, Lin, 1971], employing a pre-filtering procedure to arrive at a sensible

choice of quarterly indicator series, namely non-mineral employment and elec-

tricity production. We then employed a univariate HP filter to derive a quarterly

measure of the output gap, and gave a brief interpretation of its implications for

the historical profile of demand conditions in PNG over the last few decades.

This is far from the end of the story. As alluded to in the introduction, the true

objective of constructing an output gap measure is to estimate a Phillip’s Curve

for PNG. This is a large project in its own right, and will form the basis for the

second complimentary paper.

There are some clear issues that need to be resolved as well. For instance, the

unaccountable movements in the output gap highlighted in Section 3.2 may be

the result of inaccuracies in data, or a lack of economic understanding. In the

first case, this is easily resolved through further data treatment. In the second

case, this may be resolved through estimation of a Phillips Curve, as above,

i.e. interpreting the output gap with respect to inflation and other supply-side

variables could yield a more refined understanding of overall demand conditions

during those periods.

This aside, there are still several avenues of further work available for the present

paper. Firstly, an even greater set of potential indicator series could be utilized.

For instance, the survey data from BPNG’s Business Liaison Survey could be

utilized, once it is fully verified and stripped of inaccuracies. Such a data set

could be invaluable for further understanding drivers of quarterly output. Fi-

nally, using state-space methods to estimate the output gap through an UC

approach could be a worthwhile endeavor.
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Figure 12: Final choice, non-mineral and composite output gaps
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A Description of Data

• Gross Domestic Product

– Nominal - annual data, in Kina terms, 1996-2006 inclusive, provided

by the National Statistics Office (NSO) of PNG. 2007-2011, based on

Ministry of Treasury of PNG estimates.

– Real - as for nominal GDP, in Kina terms, base years 1983 and 1998.

– Deflator - as for nominal GDP.

– Fitted Deflator - quarterly data, constructed by applying Chow-Lin

procedure to the annual deflator, using headline CPI as a quarterly

indicator.

• Production data

– Electricity Production - quarterly data, in kilowatt-hours (kwh), 1996Q1

- 2011Q4, provided by PNG Power.

– Employment Indices - quarterly data, index, 1996Q1 - 2011Q4, pro-

vided by BPNG.

• Monetary data

– Nominal, all series - quarterly data, in Kina terms, 2002Q1 - 2011Q4,

provided by BPNG.

– Real - as for nominal, deflated using fitted GDP deflator.

• Fiscal data

– Nominal, all series - quarterly data, in Kina terms, 1996Q1 - 2011Q4,

provided by the Ministry of Treasury.

– Real - as for nominal, deflated using fitted GDP deflator.

• Imports data

– Nominal, all series - quarterly data, in Kina terms, 1996Q1 - 2011Q4,

provided by BPNG.

– Real - as for nominal, deflated using the International Monetary Fund

(IMF) World Economic Outlook’s (WEO) food and beverage and en-

ergy commodity price indices.
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B Structure of the Covariance matrix

Under heteroskedasticity and pseudo-autocorrelation, the covariance matrix Ω

is defined by:

Ω = WVW =
1

1− ρ2


ω1 0 · · · 0

0 ω2 · · · 0
...

...
. . .

...

0 0 · · · ω4n

×


1 ρ ρ2 · · · ρ4n−1

ρ 1 ρ · · · ρ4n−2

ρ2 ρ 1 · · · ρ4n−1

...
...

...
. . .

...

ρ4n−1 ρ4n−2 ρ4n−3 · · · 1



×


ω1 0 · · · 0

0 ω2 · · · 0
...

...
. . .

...

0 0 · · · ω4n


In this case, if ya is multivariate normal, then is has mean CXβ and variance

CW ′VWC ′. As was noted earlier, we make the working assumption that the

innovations are homoskedastic, i.e. that W = I4n. In practice, a canonical choice

for the ω′is could be the associated weighting as determined through the PCA

performed earlier (see [Frain, 2004]). The log-likelihood function is given by

L(β|X) = −N
2
log(2π) − 1

2
log(|CW ′VWC ′|)

−1

2
(ya − CXβ)′(X ′a(CW ′VWC ′)−1Xa)−1(ya − CXβ)

For a given ρ, the solution to the maximum likelihood problem is given by:

βmax = (X ′a(CW ′VWC ′)−1Xa)−1X ′a(CW ′VWC ′)−1ya

and

σ2
max =

1

N
(ya − CXβmax)′(CW ′VWC ′)(ya − CXβmax)

Hence

L(βmax) = −N
2

(log(2π) + 1)− N

2
log(σ2

max)− 1

2
log(|C ′ΩC|)
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Thus, our task reduces to solving

max
ρ∈(−1,1)

L(βmax(ρ))

In our routine, we achieve this through a relatively crude iterative procedure that

determines the local maximum of L(βmax) corresponding to the largest value of

ρ. More specifically, if

{L(βmax(ρ1)), ...,L(βmax(ρn))} are the set of local maxima for L(βmax(ρ)), cor-

responding to the values {ρ1, ..., ρn}, then we pick ρk, where ρk = max{ρ1, ..., ρn}.25

For illustrative purposes, Figure 13 plots L(βmax(ρ)) for ρ in the interval [−0.9, 0.9]

for a few combinations of quarterly series:

The reason for this choice is that higher values of ρ generate smoother quarterly

profiles, which in turn generate more sensible output gaps and seem to fit better

with an intuitive understanding of the data. Figure 14 shows various quarterly

output series based on fixed values of ρ.26

C Application of Univariate Filters

C.1 The HP Filter

The HP filter solves the constrained minimization problem:

Minimize

T∑
t=1

(yt − τt)2 + λ

T−1∑
t=1

[(τt+1 − τt)− (τt − τt−1)]2

subject to yt = τ + ct

The constraint represents output as the sum of a trend component, τt, and a

cyclical component, ct. The minimization expression is comprised of two terms.

The first term minimizes the magnitude of the cyclical component, whereas the

second term penalizes variations in the growth rate of the trend component, i.e.

smoothens the trend component. Thus, the parameter λ controls the smooth-

ness of the trend component. The larger the value of λ, the smoother the trend

component. [Hodrick, Prescott, 1980] suggest a value for λ of 1600, based on

25The routine actually finds local minima to the negative of the expression L(βmax(ρ)).
26The quarterly series used for this graph are non-mineral employment, electricity produc-

tion, mineral employment and currency in circulation.
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Figure 13: L(βmax(ρ)) for different combinations of quarterly series
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Figure 14: Quarterly Output Series with Different Autocorrelation parameters
in innovations
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US data. However, this choice is entirely a function of the authors’ priors on

the nature of potential output in the US over the prevailing period. As such,

[Marcet, Ravn., 2003] suggest two “adjustment rules”. The first keeps relative

the volatility of growth in the trend and cycle components constant, the sec-

ond keeps the absolute volatility of growth in the trend component constant.

We wrote a simple program in Eviews that performs both adjustment rules.

Applying adjustment rules 1 and 2 to the HP filter, based on an output series

generated using non-mineral employment and electricity production as quarterly

input series, yielded λ-values of 2290 and 3490 respectively. These values imply

a slightly smoother profile for potential output, i.e. potential output in PNG

is slightly slower to adjust. Figure 15 shows the consequences for the resultant

output gaps.

The newly determined values for λ clearly have little effect on the overall profile

of the output gap. As such, we will revert to using the default value of 1600.

C.2 The BN Decomposition

The BN decomposition yields a trend component τt based on the following ex-

pression:

τt = lim
m→∞

E[yt+m −mµ|Ωt]

where µ = E[∆yt] is the deterministic drift and Ωt is the information set used

to generate the conditional expectation.27 Typically, the auto-covariance struc-

ture of the drift ∆yt is modeled as an auto-regressive moving-average (ARMA)

process. Figure 16 shows a comparison of output gaps, using a variety of ARMA

specifications. Note that series BN p q refers to a ARMA(p,q) specification.

Whilst all the output gaps shown appear to demonstrate mild non-stationarity,

the ARMA(1,1), ARMA(2,1) and ARMA(1,2) seem to exhibit the most credible

profile. We will use the ARMA(2,1) henceforth.

27See [Morley., 2010].
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Figure 15: Comparison of output gaps based on different λ-values in the HP
filter
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Figure 16: Comparison of output gaps based on different λ-values in the HP
filter
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D Eviews code for Chow-Lin procedure

’ wr i t t en by N. Ve l lod i , Research Department , Bank o f Papua New Guinea

cd ”C:\Documents\BPNG\Output Gap\Eviews PNG”

load g d p i n d i c a t o r s

smpl 1996 :1 2010 :4

’ the low−f r equency s e r i e s to be d i sagg rega ted

genr y l f s e r = gdp cnst

genr y h f s e r = g d p c n s t q r t l y

’ the q u a r t e r l y i n d i c a t o r s e r i e s

genr x h f s e r 1 = emp nonmin tc

genr x h f s e r 2 = kwh tc

genr x h f s e r 3 = emp min tc

genr x h f s e r 4 = cur r ency t c

genr x h f s e r 5 = t a x p e r t c

genr x h f s e r 6 = e x p c u r r t c

’NOTE: you may inc lude a r b i t r a r i l y more i n d i c a t o r s e r i e s .

s c a l a r s = 4 ’ the f requency o f d i sagg rega t i on , s=4 annual to

quar te r ly , s=12 annual to monthly , s=3 q u a r t e r l y to monthly

s c a l a r p i = 3.14159265

s c a l a r N ind = 4 ’ the number o f i n d i c a t o r s e r i e s

be ing used

s c a l a r N q = 60 ’ the number o f q u a r t e r l y obs e rva t i on s ; must

match the sample per iod de f ined above

s c a l a r N y = 15 ’ the number o f annual ob s e rva t i on s

’========================================

’ subrout ine to c r e a t e aggregat i on matrix C.
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subrout ine l o c a l aggreg ( matrix AGG, s c a l a r op1 , s c a l a r N, s c a l a r s ,

s c a l a r n up , s c a l a r n dn )

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ PURPOSE: Generate a temporal aggregat i on matrix

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ SYNTAX: matrix AGG

’ c a l l aggreg (AGG, op1 , N, s ,

n up , n dn )

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ OUTPUT: N x sN temporal aggregat i on matrix AGG(NxsN)

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ INPUT: AGG: aggregat i on matrix name ,

have to be dec l a r ed be f o r e subrout ine

’ op1 : type o f

temporal aggregat i on

’ op1=1 sum ( f low )

’ op1=2 average (

index )

’ op1=3 l a s t element ( s tock

) − i n t e r p o l a t i o n

’ op1=4 f i r s t element (

s tock ) − i n t e r p o l a t i o n

’ N:

number o f low frequency data po in t s

’ s :

number o f high f requency po in t s

’ f o r

each low frequency data po in t s ( f r e q . conver s i on )

’ s=4 annual to

q u a r t e r l y

’ s=12 annual to

monthly

’ s=3 q u a r t e r l y to

monthly

’ n up number o f

ex t rapo la t ed forward high f requency po in t s

’ HF

subper iods not s u b j e c t to temporal aggreagat ion c o n s t r a i n t

’ n dn number o f

ex t rapo la t ed backward high f requency po in t s

’ HF

subper iods not s u b j e c t to temporal aggreagat ion c o n s t r a i n t

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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’ Checking parameter s

i f ( s=4 OR s=12 OR s=3) then

’ Generation o f aggregat i on vec to r c c vec

i f op1=1 then

rowvector ( s ) c c vec = 1

e l s e

i f op1=2 then

rowvector ( s ) c c vec = 1/ s

e l s e

i f op1=3 then

rowvector ( s ) c c vec = 0

cc vec ( s )=1

e l s e

i f op1=4 then

rowvector ( s ) c c vec = 0

cc vec (1 )=1

e l s e

s t a t u s l i n e ERROR! ! ! AGG( ) subrout ine ! ! ! ∗ ∗ ∗
Improper va lue o f opt ion parameter [ ta :

aggregat i on type = (1 to 4) ] ∗ ∗ ∗ ! ! !

s top

e n d i f

e n d i f

e n d i f

e n d i f

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

’ Generation o f aggregat i on matrix AGG=I (N) kronecker c c vec

i f ( n up=0 AND n dn=0) then

’ Generation o f ord inary aggregat ion matrix , pure d i s t r i b u t i o n

n=N∗ s

matrix AGG=@kronecker ( @ident i ty (N) , c c vec )

e l s e

’ Generation o f enhaced aggregat ion matrix

i f ( n up>0 AND n dn=0) then
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matrix AGG temp=@kronecker ( @ident i ty (N) , c c vec )

matrix (N, N∗ s+n up ) AGG

matrix (N, n up ) z e ro s

matplace (AGG, AGG temp, 1 , 1 )

matplace (AGG, zeros , 1 , N∗ s+1)

e l s e

i f ( n up=0 AND n dn>0) then

matrix AGG temp=@kronecker ( @ident i ty (N) , c c vec )

matrix (N, N∗ s+n dn ) AGG

matrix (N, n dn ) z e ro s

matplace (AGG, AGG temp, 1 , n dn+1)

matplace (AGG, zeros , 1 , 1)

e l s e

i f ( n up>0 AND n dn>0) then

matrix AGG temp=@kronecker ( @ident i ty (N) , c c vec )

matrix (N, N∗ s+n up+n dn ) AGG

matrix (N, n dn ) ze ro s dn

matrix (N, n dn ) ze ro s up

matplace (AGG, AGG temp, 1 , n dn+1)

matplace (AGG, zeros dn , 1 , 1)

matplace (AGG, zeros up , 1 , N∗ s+1+n dn )

e l s e

s t a t u s l i n e ERROR! ! ! AGG( ) subrout ine ! ! ! ∗ ∗ ∗ Improper va lue

o f opt ion parameter [ n up or n dn : >= 0 ] ∗ ∗ ∗ ! ! !

s top

e n d i f

e n d i f

e n d i f

e n d i f

e l s e

s t a t u s l i n e ERROR! ! ! AGG( ) subrout ine ! ! ! ∗ ∗ ∗ Improper va lue o f

opt ion parameter [ s : f r equency conv . = (3 , 4 , 12) ] ∗ ∗ ∗ ! ! !

s top

e n d i f

endsub

’========================================

’========================================
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’========================================

’ Asiggning s e r i e s to ve c t o r s

sample NA smpl y @al l i f y l f s e r <> NA

sample NA smpl x @al l i f x h f s e r 1 <> NA

’ Ass ign ing s e r i e s to matrix o b j e c t s

stomna ( y l f s e r , y l f t emp )

matrix (N q , N ind ) x hf temp

! i=1

whi l e ! i<=N ind

stomna ( x h f s e r { ! i } , x h f v e c { ! i })

c o l p l a c e ( x hf temp , x h f v e c { ! i } , ! i )

! i = ! i +1

wend

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

’ S i z e o f the problem

! n hf=@rows ( y l f t emp )

! n l f=N y

’ S i z e o f low frequency input

! n h f x=@rows ( x hf temp ) ’

S i z e o f high f requency input ( number o f ob s e rva t i on s )

! p hf x temp=@columns ( x hf temp ) ’ S i z e o f high

f requency input ( number o f v a r i a b l e s without i n t e r c e p t )

! p h f x =! p hf x temp+1 ’ S i z e o f

high f requency input ( number o f v a r i a b l e s with i n t e r c e p t )

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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’ Aggregation o f low frequency s e r i e s equaly d i s t r i b u t e d in

subper iods

matrix AGG1

c a l l aggreg (AGG1, 1 , ! n l f , s , 0 , 0)

matrix (N y , N q ) AGG2

! i=1

whi l e ( ! i <= N q )

c o l p l a c e (AGG2, @columnextract (AGG1, ! i ) , ! i )

! i =! i+1

wend

matrix y l f=AGG2∗ y l f t emp

d e l e t e AGG1

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

’ Generation o f aggregat i on matrix AGG [ ! n l f x ! n l f ∗ s ] f o r

aggregat i on in procedure

matrix AGG

c a l l aggreg (AGG, 1 , ! n l f , s , 0 , 0)

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

’ Prepar ing the X matrix : i n c l u d i n g i n t e r c e p t

matrix ( ! n hf x , ! p h f x ) x h f=1

matplace ( x hf , x hf temp , 1 , 1)

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

’ Temporal aggreagat ion o f the i n d i c a t o r

matrix x l f=AGG2∗ x h f

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ subrout ine c a l c u l a t i n g maximised value o f log−l i k e l i h o o d func t i on

as a func t i on o f rho

subrout ine f r h o ( s c a l a r frho , s c a l a r Rho)

matrix I=@ident i ty ( ! n h f x )

matrix W=I

matrix ( ! n hf x , ! n h f x ) LL=0

f o r ! i=2 to ! n h f x
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LL ( ! i , ! i −1)=−1

’ Aux i l i a ry matrix u s e f u l

to s i m p l i f y computations

next

s c a l a r N = ! n l f

matrix AUX=I+Rho∗LL

Aux(1 , 1 )=@sqrt(1−Rhoˆ2)

matrix W=@inverse ( @transpose (AUX) ∗AUX)

’ High f requency VCV matrix ( without

sigma a )

matrix WW=AGG2∗W∗@transpose (AGG2) ’

’ Low frequency VCV matrix (

without sigma a ) EQUATION 4 IN CHOW LIN

matrix Wi=@inverse (WW)

matrix INV= @inverse ( @transpose ( x l f ) ∗Wi∗ x l f )

matrix beta= INV∗@transpose ( x l f ) ∗Wi∗ y l f

’ beta ML est imator EQUATION 15

IN CHOW LIN

matrix u l f=y l f−x l f ∗beta

’ Low frequency r e s i d u a l s EQUATION 16 IN CHOW LIN

matrix scp=@transpose ( u l f ) ∗Wi∗ u l f

’ Weighted l e a s t squere

matrix s igma a=scp ∗(1/N)

’

s igma a ML est imator

matrix FM=w∗@transpose (AGG2) ∗Wi

’ F i l t e r i n g matrix EQUATION 14 (

Vz .V.ˆ(−1) )

matrix u hf=FM∗ u l f

s c a l a r s c p s c a l a r = scp (1 , 1 )

s c a l a r s i g m a s c a l a r = sigma a (1 , 1 )

s c a l a r f rho = N/2∗( l og (2∗ pi ) ) + N/2∗ l og ( s i g m a s c a l a r ) + 1/2∗
l og ( @det (WW) ) + 1/(2∗ s i g m a s c a l a r ) ∗( s c p s c a l a r )

endsub
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’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ subrout ine c a l c u l a t i n g value o f rho that maximises log−l i k e l i h o o d

func t i on us ing a manual search . S p e c i f i c a l l y , i t f i n d s the

h i ghe s t l o c a l maximum of the l i k e l i h o o d func t i on .

subrout ine rhomaxvector ( matrix f r h o s )

! k t = 1800

! k s t ep = 0.001

! k min = −0.9

! f rhos d im = ! k t

matrix ( ! k t , 1 ) f r h o s = 0

! k=1

whi l e ! k<= ! k t

! f rho k = 0

c a l l f r h o ( ! f rho k , ! k min+!k ∗ ! k s t ep )

f r h o s ( ! k , 1 ) =! f rho k

! k = ! k +1

wend

endsub

subrout ine rhomaxmanual ( s c a l a r rho2 )

matrix f rho s1 = 0

c a l l rhomaxvector ( f rho s1 )

! k = 1798

whi l e ( f rho s1 ( ! k+2 ,1) − f r ho s1 ( ! k+1 ,1)>0)

i f ( f rho s1 ( ! k , 1 ) − f r ho s1 ( ! k+1 ,1)>0) then

rho2 = −0.9 + 0 . 0 0 1 ∗ ( ! k+1)

e n d i f

! k=!k−1

wend

endsub

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ F ina l e s t imat i on with f i x e d rho

subrout ine f i n a l ( s e r i e s q r t l y i n d i c a t o r )

matrix I=@ident i ty ( ! n h f x )

matrix W=I

matrix ( ! n hf x , ! n h f x ) LL=0
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f o r ! i=2 to ! n h f x

LL ( ! i , ! i −1)=−1

next

s c a l a r rho1 = 0

c a l l rhomaxmanual ( rho1 )

i f ( rho1<−0.8) then

s t a t u s l i n e ERROR! ! ! f i n a l ( ) subrout ine ! ! ! ∗ ∗ ∗ BAD

RHO ∗ ∗ ∗ ! ! !

s top

e n d i f

s c a l a r N = N y

’ s c a l a r rho3 = −0.9

matrix AUX=I+rho1∗LL

’ matrix AUX=I+rho3∗LL

Aux(1 , 1 )=@sqrt(1− rho1 ˆ2)

’ Aux(1 , 1 )=@sqrt(1− rho3 ˆ2)

matrix W=@inverse ( @transpose (AUX) ∗AUX)

’ High f requency VCV matrix ( without sigma a )

matrix WW=AGG2∗W∗@transpose (AGG2)

’ Low frequency VCV matrix ( without

sigma a ) EQUATION 4 IN CHOW LIN

matrix Wi=@inverse (WW)

matrix beta=@inverse ( @transpose ( x l f ) ∗Wi∗ x l f ) ∗@transpose (

x l f ) ∗Wi∗ y l f ’ beta ML est imator EQUATION 15 IN CHOW

LIN

matrix u l f=y l f−x l f ∗beta

’ Low

frequency r e s i d u a l s EQUATION 16

matrix scp=@transpose ( u l f ) ∗Wi∗ u l f

’ Weighted l e a s t squere

matrix s igma a=scp ∗(1/N)

’ s igma a ML

est imator

matrix FM=w∗@transpose (AGG2) ∗Wi

’ F i l t e r i n g matrix EQUATION 14 (Vz .V

.ˆ(−1) )

matrix u hf=FM∗ u l f

’ High
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f r equency r e s i d u a l s

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

’ Temporaly d i sagg r ega ted time s e r i e s

matrix y h f=x h f ∗beta+u hf

’ Ass ign ing vec to r to s e r i e s

mtos ( y hf , y h f s e r , NA smpl x )

s e r i e s q r t l y ou tput = y h f s e r

endsub

s e r i e s q r t l y ou tput

c a l l f i n a l ( q r t l y ou tput )

genr gdp annual = gdp cnst

l i n e q r t l y ou tput gdp annual
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